|
|||||||
| Rotary Tech - General Rotary Engine related tech section.. Tech section for general Rotary Engine... This includes, building 12As, 13Bs, 20Bs, Renesis, etc... |
![]() |
|
|
Thread Tools | Display Modes |
|
|
|
|
#1 |
|
Test Whore - Admin
Join Date: Mar 2008
Location: Right Behind you son
Posts: 4,581
Rep Power: 10 ![]() |
Sounds like a VERY intreresting project! I like the thought that went into it. Unfortuneately for me, I only hav the option of running one stepper motor with the Motec that I'll be using. I was going to use it for the OMP but I like the throttle body butterfly for the intake idea more. I suppose I could use an internal style wastegate actuator connected to a butterfly valve as well.
My main question would be, how would the turbo's handle working against each other? The larger T4 turbo in your example would be moving more CFM at the same boost pressure as the T3 style. Pressure is pressure and if held constant between the turbos, would the T4 over power the T3 in anyway? The setup I had in mind is similar. Here's the setup that I'm contemplating Two equally sized turbo's as far as compressor goes. Possibly changing the A/R on the secondary turbo to reduce the inherent backpressure that would be created between the two turbo's. Basically what I'm contemplating is an equal length mani with a T3 flange and the largest WG possible right under the flange. The primary turbo would get the full brunt of the rotary exhaust. This primary turbo MAY be gated on the snail, and if so, that WG will run to the DP, I don't think the will be necessary though. Routing from the turbines exit of the first turbo is plumbed directly to the turbine inlet of the secondary turbo. The first WG is also plumbed back into that same exhaust stream allowing the exhaust energy to be split. There is a second WG below the turbine of the secondary turbo as well. This WG is vented directly to the actual DP. That's the exhaust side of things. The intake side is rather simple as well. THe primary turbo is plumbed directly to the intake track. THe secondary turbo will have a vent valve placed between the compressor discharge and a TB style butterfly valve to keep the two turbo's seperate. Play by play - Theory being that when you floor the go pedal, the smaller turbo gets the full power and flow of the exhaust and such will spool VERY quickly. The WG associated with that turbo keeps the primary turbo;s boost in check. The secondary WG will COULD be open at this point to reduce the backpressure between the two turbo's to allow for a bit faster spool in the lower RPM's. (If I need to build seperate vac and boost storage tanks to aid in this, so be it. Easy enough to do, They're on my setup now actually) As RPM's and EMAP increase prior to the first turbo, the primary WG will open to keep the primary's boost in check, when the prim WG is fully open, the secondary will be in charge of controlling boost in the entire system. Once the secondary turbo begins creating boost, the seconday WG will most likely begin to close to aid in the secondary creating boost. Once boost is realized in the secondary turbo, the vent will close, the butterfly valve will open and both will be running in parrallel. The point of the second WG on the snail of the first turbo would be to vent the exhaust energy from the first turbo if the difference in flow of the exhaust system was such that the primary was receiving more energy than the first. In my Datalogs of the stock sequential system, the rear turbo will always run hotter by ~75-100*. I've switched signals, repeated runs and gotten the same result so I know that it is not a function of different sensors, wiring, or signal amps. My theory is that the exhaust flapper in the rear of the housing creates enough resistance to increase the backpressure there, keeping the gas hotter. There is a direct correlation with the seperation of EGT's and EMAP. The system that I am proposing is very similar to the stock sequential system. In my eyes, the drawback to the stock system is two fold. The inability of the hitachi turbo's to tolerate more than 15-16 lb's of boost reliably. More important though is the exhaus mani itself is a convoluted mess. A tubular mani in my eyes would yeild significant gains. The plumbing would be a bit of a chore. However, I believe that after scouring the goodridge catalog, they offer enough fittings to allow for a somewhat neat packaging. I would run one -3 line to the top of the turbos and hope that I could get the CHRA's in a banjo fitting and just use an on-the-run type fitting to feed the second turbo. Drains are pretty simply if you're using an RE or an REW block, there is a drain for and aft. I would use the outlet/inlet of the WP housing to cool the first turbo. Perhaps use the nipple on the rear housing to cool the rear turbo and just weld a second -6 bung on the waterpump inlet. Although I do plan on using an REW WP housing, I plan to take the T-stat housing and outlet off and build my own to suit my needs. In that case the AST would be contained there and I would just have a ton of fittings welded on to it. I think the exhaust plumbing would be much more of a headache than oil/coolant plumbing it thats what you guys are reffering to with the plumbing nightmare comments. Hardlines would be awesome to have here as well and are very easily made, even when using banjo fittings.
__________________
-The Angry Stig- DGRR 2009, 2011, 2012 & 2013 - Best FC DEALS GAP!! WOOHOOOO!!!!! 2015 Audi S4 - Samantha - Zero Brap S4 2004 RX8 - Jocelyn - 196rwhp, 19mpg fuel to noise converter 2000 Jeep Cherokee Sport - Wifey mobile - Now with 2.5" OME lift and 30" BFG AT KO's! So it begins 1998 Jeep Cherokee - 5 spd, 4" lift, 33" BFG's - Rotary Tow Vehicle 1988 'Vert - In progress 1988 FC Coupe - Gretchen -The attention whore BEAST! I'm a sick individual, what's wrong with you? I'm pure Evil I'm still insane, in the best possible way. I think Brian's idea of romance is using lube. Your rage caused the meteor strike in Russia. The Antichrist would be proud of his minion. You win with your thread. Most everything It's a truck with a steel gate on the back. Just a statement of fact Motec M820, AIM dash, ported 13B-RE Cosmo, 6-spd trans, 4.3 Torsen, custom twin wg fully divided mani, Custom 4" split into 2x 3" exhaust, Custom HMIC, Custom custom custom custom I like to welder stuff.... No Bolt-ons allowed. Dyno'ed @ Speed1 Tuned by me - 405rwhp on WG.... WM50 cuming soon. -Angry Motherf*cker Mode ENGAGED- |
|
|
|
|
|
#2 | |||
|
Rotary Fanatic
Join Date: Sep 2008
Posts: 147
Rep Power: 18 ![]() |
Quote:
Quote:
If you were using a system with more secondary turbo boost than the primary, it would probably be worth using another valve to redirect air from the primary turbo outlet into the turbo inlets, basically making a loop so that the turbo keeps spinning instead of stalling out against a closed valve. Quote:
So, you have to run your small turbocharger first, or else the exhaust, which can freely flow through the larger turbo, gets backed up against the smaller one, which means there's no pressure differential on the larger one. Because the smaller turbo must come first, the net effect is that once the exhaust runs through the small turbo, you have the difference in pressure between the primary turbo outlet and the secondary turbo outlet to extract useful energy from; far less than there exists in the manifold. Certainly there is energy there, but you'll find your larger turbo takes much longer to spool than it would in a single turbo configuration, which necessitates a larger primary turbo, which raises your boost threshold. Your concept would certainly work, and I believe your system of wastegates would work perfectly, too, I just don't know what the performance would be like. I would be curious to see it in action, though. Now, running sequential twins is an option, but it requires two reasonably small turbos. I feel a small and then a somewhat larger turbo will give better top end performance, but again, I'd be very interested to run the dyno numbers on a twin sequential setup with properly sized turbos and a good manifold. I don't know where you're at in the country, but if you're anywhere near Cincinnati, I've got my engine dyno at the shop setup to test and tune rotaries, and I'm just a bit of fabrication work away from testing my setup. I'll be testing on a stock RE motor, with stock intake and upgraded injectors, and a water to air intercooler for consistency. That way I can test several turbo setups and map them against each other in an apples to apples comparison. It'd always help to have another brain when the time comes to do it. |
|||
|
|
|
|
|
#3 | ||||||
|
Test Whore - Admin
Join Date: Mar 2008
Location: Right Behind you son
Posts: 4,581
Rep Power: 10 ![]() |
Quote:
Quote:
Quote:
Quote:
Regarding my manifold setup - One of the things that concerns me, is as you put it, the smaller turbo acting as a plug in the system. Leaving the second turbo with much less energy to spool up to the same level as the first. I'm worried that the extra distance traveled, the less heat available, is going to lead to a secondary turbo that just cannot keep up with the first. The main reason for thinking about not only the very large traditional WG on the primary turbo's mani, but also an internal gate as well. Quote:
Quote:
__________________
-The Angry Stig- DGRR 2009, 2011, 2012 & 2013 - Best FC DEALS GAP!! WOOHOOOO!!!!! 2015 Audi S4 - Samantha - Zero Brap S4 2004 RX8 - Jocelyn - 196rwhp, 19mpg fuel to noise converter 2000 Jeep Cherokee Sport - Wifey mobile - Now with 2.5" OME lift and 30" BFG AT KO's! So it begins 1998 Jeep Cherokee - 5 spd, 4" lift, 33" BFG's - Rotary Tow Vehicle 1988 'Vert - In progress 1988 FC Coupe - Gretchen -The attention whore BEAST! I'm a sick individual, what's wrong with you? I'm pure Evil I'm still insane, in the best possible way. I think Brian's idea of romance is using lube. Your rage caused the meteor strike in Russia. The Antichrist would be proud of his minion. You win with your thread. Most everything It's a truck with a steel gate on the back. Just a statement of fact Motec M820, AIM dash, ported 13B-RE Cosmo, 6-spd trans, 4.3 Torsen, custom twin wg fully divided mani, Custom 4" split into 2x 3" exhaust, Custom HMIC, Custom custom custom custom I like to welder stuff.... No Bolt-ons allowed. Dyno'ed @ Speed1 Tuned by me - 405rwhp on WG.... WM50 cuming soon. -Angry Motherf*cker Mode ENGAGED- |
||||||
|
|
|
|
|
#4 | ||||||
|
Rotary Fanatic
Join Date: Sep 2008
Posts: 147
Rep Power: 18 ![]() |
Quote:
Quote:
Quote:
Quote:
To control boost and turbine speed on the primary, you want to put a big wastegate on the manifold, and maybe internally gate the turbo, as well. The problem is that by venting all that pressure past the turbo into the inlet of the secondary, then at higher RPMs, where there's a lot of exhaust, you've eliminated the pressure differential between the inlet and the outlet of the primary; the pressure coming in is the same as the pressure going out, thanks to the big wastegate opening a valve between the two in an effort to keep boost under control. The wastegate will stay open instead of closing, though, because it's linked to system boost, not individual turbo boost. Eventually, because there's very little pressure differential to run it, inlet pressure from the second turbo will begin flowing out of the primary's inlet. Quote:
The question is, why leave performance on the table when you can get the same results, get the same outstanding low end response and torque when you can -also- get a higher top end? My system would work either way, but it seems silly to leave power when it's there. At very least, you could use a larger turbo, tune for high boost, and use the control box to bring it down when it's unwanted. And here's something else to consider; in a setup like this, the larger turbo spools much -much- faster, due to the simple fact that the engine is already running under boost while spooling it. A 13b under 15psi of boost is exhaling as much exhaust as a 5.0 liter NA boinger, but with a much more favorable exhaust arrangement, in terms of exhaust pulses, and manifold setup. The primary turbo, being spooled already, is only using at small chunk of that exhaust energy, and the rest is generally wasted via a properly named wastegate. Quote:
|
||||||
|
|
|
|
|
#5 | ||||||
|
Test Whore - Admin
Join Date: Mar 2008
Location: Right Behind you son
Posts: 4,581
Rep Power: 10 ![]() |
Quote:
Quote:
Quote:
Quote:
What I would like to try is a pair of very similarly sized turbo's collecting both runners exhaust right at the point where they would split off in a Y - one going to the primary turbo, the other to a LARGE WG. I would like to take advantage of the energy post WG-before being sucked up by a turbine. This would be routed directly to the bottom of the flange on the secondary. Going back to your point of the lack of a pressure differential on the primary, I'm not sure if the exhaust of the primary should be routed around the secondaries turbine, or to it. I think there is response lost if it's routed around it. However, maybe the thing to do is use a slightly larger A/R on the primary to let it breath a little better. Quote:
Quote:
Please do. I'd love to get a first hand look at what's going on, what works and what doesn't
__________________
-The Angry Stig- DGRR 2009, 2011, 2012 & 2013 - Best FC DEALS GAP!! WOOHOOOO!!!!! 2015 Audi S4 - Samantha - Zero Brap S4 2004 RX8 - Jocelyn - 196rwhp, 19mpg fuel to noise converter 2000 Jeep Cherokee Sport - Wifey mobile - Now with 2.5" OME lift and 30" BFG AT KO's! So it begins 1998 Jeep Cherokee - 5 spd, 4" lift, 33" BFG's - Rotary Tow Vehicle 1988 'Vert - In progress 1988 FC Coupe - Gretchen -The attention whore BEAST! I'm a sick individual, what's wrong with you? I'm pure Evil I'm still insane, in the best possible way. I think Brian's idea of romance is using lube. Your rage caused the meteor strike in Russia. The Antichrist would be proud of his minion. You win with your thread. Most everything It's a truck with a steel gate on the back. Just a statement of fact Motec M820, AIM dash, ported 13B-RE Cosmo, 6-spd trans, 4.3 Torsen, custom twin wg fully divided mani, Custom 4" split into 2x 3" exhaust, Custom HMIC, Custom custom custom custom I like to welder stuff.... No Bolt-ons allowed. Dyno'ed @ Speed1 Tuned by me - 405rwhp on WG.... WM50 cuming soon. -Angry Motherf*cker Mode ENGAGED- |
||||||
|
|
|
|
|
#6 | |
|
Rotary Fanatic
Join Date: Sep 2008
Posts: 147
Rep Power: 18 ![]() |
Quote:
That's why in the diesel compound systems, the smaller turbo always goes first, then the exhaust runs out to the secondary. I'm not sure exactly what would happen if you ran a pair of identical twins in a compound setup. I don't know for sure if that's what you were saying or not, but I figured I'd clarify, just in case. |
|
|
|
|
![]() |
| Bookmarks |
|
|