View Single Post
Old 10-09-2010, 08:54 PM   #35
vex
RCC Loves Me Not You
 
vex's Avatar
 
Join Date: Jul 2008
Location: Influx.
Posts: 2,113
Rep Power: 19
vex will become famous soon enough
Of interest and the reason for using 0.0013 cubic meters:
Quote:
Originally Posted by wikipedia
There are various methods of calculating the engine displacement of a Wankel. The Japanese regulations for calculating displacements for engine ratings use the volume displacement of one rotor face only, and the auto industry commonly accepts this method as the standard for calculating the displacement of a rotary. However, when compared on the basis of specific output, the convention results in large imbalances in favor of the Wankel motor.
For comparison purposes between a Wankel Rotary engine and a piston engine, displacement and corresponding power output can more accurately be compared on the basis of displacement per revolution of the eccentric shaft. A calculation of this form dictates that a two rotor Wankel displacing 654 cc per face will have a displacement of 1.3 liters per every rotation of the eccentric shaft (only two total faces, one face per rotor going through a full power stroke) and 2.6 liters after two revolutions (four total faces, two faces per rotor going through a full power stroke). The results are directly comparable to a 2.6-liter piston engine with an even number of cylinders in a conventional firing order, which will likewise displace 1.3 liters through its power stroke after one revolution of the crankshaft, and 2.6 liters through its power strokes after two revolutions of the crankshaft. A Wankel Rotary engine is still a 4-stroke engine and pumping losses from non-power strokes still apply, but the absence of throttling valves and a 50% longer stroke duration result in a significantly lower pumping loss compared against a four-stroke reciprocating piston engine. Measuring a Wankel rotary engine in this way more accurately explains its specific output, as the volume of its air fuel mixture put through a complete power stroke per revolution is directly responsible for torque and thus power produced.
If I'm reading this correctly a proper displacement of 0.0013 cubic meters is achieved with 1 revolution of the eccentric shaft. Validating the Helmholtz equation used.
vex is offline   Reply With Quote